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Abstract In the last decade there has been increasing interest in the fields of random ma-
trices, interacting particle systems, stochastic growth models, and the connections between
these areas. For instance, several objects appearing in the limit of large matrices arise also
in the long time limit for interacting particles and growth models. Examples of these are the
famous Tracy-Widom distribution functions and the Airy2 process.

The link is however sometimes fragile. For example, the connection between the eigen-
values in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is re-
stricted to one-point distribution, and the connection breaks down if we consider the joint
distributions.

In this paper we first discuss known relations between random matrices and the asym-
metric exclusion process (and a 2+1-dimensional extension). Then, we show that the corre-
lation functions of the eigenvalues of the matrix minors for β = 2 Dyson’s Brownian motion
have, when restricted to increasing times and decreasing matrix dimensions, the same corre-
lation kernel as in the 2 + 1-dimensional interacting particle system under diffusion scaling
limit. Finally, we analyze the analogous question for a diffusion on (complex) sample co-
variance matrices.

Keywords Interacting particle systems · Growth models · Random matrices

1 Introduction

In the seminal paper [5] Baik, Deift, and Johansson prove that the longest increasing sub-
sequence of a random permutation has fluctuations governed by the (GUE) Tracy-Widom
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distribution F2. This distribution was discovered by Tracy and Widom as the one describ-
ing the fluctuations of the largest eigenvalue of random matrices from the Gaussian Unitary
Ensemble (GUE) [38].

Soon after, Johansson [26] showed that the same limiting distribution occurs in a sto-
chastic growth model, which is equivalent to (a discrete time version of) the totally asym-
metric simple exclusion process (TASEP) and belongs to Kardar-Parisi-Zhang universality
class [30] of interacting particle systems [33]. This was the beginning of a lot of activities
in this field located at the intersection between random matrices, stochastic growth models
and interacting particle systems. For a recent review and a guide to literature on the subject,
we refer to [20] or, for a review around TASEP, see [18]. Our results are Theorem 1.2 and
Theorem 1.3, but before going in further explanations, we briefly define the models under
consideration. We restrict the discussion to the TASEP and Gaussian ensembles of random
matrices.

Gaussian Ensembles of Random Matrices and Dyson’s Brownian Motion (DBM)

(a) Hermitian matrices. The GUE ensemble of random matrices is defined1 as the probability
measure on N × N Hermitian matrices H given by

1

ZN

exp

(
− β

4N
Tr

(
H 2

))
dH, with β = 2, (1)

where dH = ∏N

i=1 dHi,i

∏
1≤i<j≤N dRe(Hi,j )dIm(Hi,j ) and ZN is the normalization con-

stant.2 Notice that the measure (1) is unitary invariant.
Dyson [15] considered a Brownian motion on the space of matrices. More precisely, set

bi,j (t) := b1
i,j (t) + ib2

i,j (t), where b1
i,j (t) and b2

i,j (t), 1 ≤ i, j ≤ N , are independent standard

Brownian motions. The matrix B(t) with entries Bi,j (t) := 1
2 (bi,j (t) + bj,i(t)) is a matrix-

valued Brownian motion on Hermitian matrices. The stationary matrix-valued Ornstein-
Uhlenbeck process defined by

dH(t) = − β

4N
H(t)dt + dB(t), with β = 2, (2)

is called β = 2 Dyson’s Brownian motion and its stationary measure is (1).
(b) Symmetric matrices. The Gaussian Orthogonal Ensemble is a measure on N × N

symmetric matrices with probability measure as in (1) but with β = 1 (and, of course, with
dH = ∏

1≤i≤j≤N dHi,j ). Similarly, one defines the β = 1 DBM by (2) with β = 1 (and
b2

i,j (t) = 0).

Continuous Time TASEP

The continuous time TASEP is a Markov process defined on the space � = {0,1}Z. For a
configuration η(t) ∈ �, we say that at position j and time t there is a particle if ηj (t) = 1,
otherwise the position is empty. The dynamics is the following: particles jumps to their

1There are two other very common standard normalization in random matrix literature, see Table 1 in [19].
2Another way to describe (1) is to take the upper-triangular entries to be independent and normal dis-
tributed: Hi,i ∼ N (0,N) for i = 1, . . . ,N , while Re(Hi,j ) ∼ N (0,N/2) and Im(Hi,j ) ∼ N (0,N/2) for
1 ≤ i < j ≤ N .
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neighboring right site with rate 1, provided the site is empty. Let f : � → R be a function
depending on a finite number of ηj ’s. Then, the backward generator L of TASEP is given
by

Lf (η) =
∑
j∈Z

ηj (1 − ηj+1)
(
f

(
ηj,j+1

) − f (η)
)

(3)

where ηj,j+1 is the configuration η with the occupations at sites j and j +1 interchanged. eLt

is the transition probability of the TASEP, see [32, 33] for more details on the construction.
In the following we will discuss results for two specific initial conditions:

(a) step initial conditions: ηj (0) = 1 for j < 0 and ηj (0) = 0 for j ≥ 0,
(b) alternating initial conditions: ηj (0) = 1 for even j and ηj (0) = 0 for odd j .

In which cases do we have the same limit processes in TASEP and Gaussian random
matrices? The probably most famous result is the convergence to the GUE Tracy-Widom
distribution F2: Let λGUE

max,N the largest eigenvalue of GUE N × N matrices. Then [38],

lim
N→∞

P
(
λGUE

max,N ≤ 2N + sN1/3
) = F2(s). (4)

The analogous result for TASEP occurs for step initial conditions.3 Let xn(t) denote the
position at time t of the particle starting from position xn(0) = −n. Then,

lim
t→∞ P

(
x[t/4](t) ≤ −s(t/2)1/3

) = F2(s). (5)

This connection extends to joint distributions [12, 27]. Let λGUE
max,N (t) be the largest eigen-

value of β = 2 Dyson’s Brownian motion at time t . Then,

lim
N→∞

λGUE
max,N (2uN2/3) − 2N

N1/3
= A2(u),

lim
t→∞

x[t/4+u(t/2)2/3](t) + 2u(t/2)2/3 − u2(t/2)1/3

−(t/2)1/3
= A2(u),

(6)

in the sense of finite-dimensional distributions, where A2 is the Airy2 process (firstly ob-
tained in a stochastic growth model by Prähofer and Spohn [36]; see also [18] for a definition
and properties).

For GOE matrices, in [39] Tracy and Widom proved that the same rescaling as in (4)
leads to a well-defined limit denoted by F1 and called the GOE Tracy-Widom distribution
function:

lim
N→∞

P
(
λGOE

max,N ≤ 2N + sN1/3
) = F1(s). (7)

An analogous result holds for TASEP with alternating initial conditions. Namely, let xn(t)

be the position at time t of the particle starting from xn(0) = −2n. Then,4

lim
t→∞ P

(
x[t/4](t) ≤ −st1/3/2

) = F1(s). (8)

3A similar result for the partially asymmetric exclusion process has been recently determined [41].
4This was proven in [11, 37], but for a related point-to-line last passage percolation model, it was obtained
by Baik and Rains before [4], see also [35] for the interpretation as growth process on a flat substrate.
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One might then hope for an extension to the joint distributions of this relation. As shown
in [11, 37]

lim
t→∞

x[t/4+ut2/3](t) + 2u(t/2)2/3

−t1/3
= A1(u), (9)

in the sense of finite-dimensional distributions, where A1 is the Airy1 process (see also [18]
for a definition and properties). However, a convincing numerical evidence [7] shows that

lim
t→∞

λGOE
max,N (8uN2/3) − 2N

2N1/3
�= A1(u). (10)

The covariance of A1(u) decays super-exponentially fast in u, while the one for the process
in l.h.s. of (10) only polynomially.

These results give rise to a number of questions:

• Is this link between TASEP and Gaussian ensembles of random matrices just accidential
or do they share a common underlying structure?

• At which point does this variety of connections come to an end?

The link between GOE and TASEP with alternating initial condition seems to be re-
stricted to the static case.5 On the other hand, as we shall discuss below, GUE and TASEP
with step initial condition have a much stronger relation, which can be seen comparing a
2 + 1-dimensional extension of TASEP with the eigenvalues of the GUE minors. However,
also this connection is only partial: The Markov property at the level of eigenvalues’ minor
does not hold in general as proven in [1] (see also Remark 11.1 in [14]), while it holds for
the interacting particle system described below.

2 + 1 Dynamics on Interlaced Particle Systems

An extension of TASEP with step initial condition to a dynamics on a set of interlaced
particle system has been introduced in [8]. We denote by xm

k (t) the position at time t

of the kth leftmost particle at level m, 1 ≤ k ≤ m ≤ n. As initial condition we have
xm

k (0) = k − m − 1 and the configuration space of the system with n levels is

S (n) = {
xm

k ∈ Z |xm+1
k < xm

k ≤ xm+1
k+1 ,1 ≤ k ≤ m ≤ n

}
. (11)

The dynamics is as follows: Each particle xm
k has an independent exponential clock of rate

one, and when the xm
k -clock rings, the particle attempts to jump to the right by one. If at that

moment xm
k = xm−1

k − 1, then the jump is blocked. If that is not the case, we find the largest
c ≥ 1 such that xm

k = xm+1
k+1 = · · · = xm+c−1

k+c−1 , and all c particles in this string jump to the right
by one.

Both the evolution on S (n) and its projection onto {xm
1 ,m ≥ 1} are Markov processes,

where the second is nothing else but the TASEP with step initial conditions described above.
The space-time correlation functions for this model are not completely known. However,
if we restrict ourselves to so-called space-like paths they are determinantal. Introduce the
notation

(n1, t1) ≺ (n2, t2) iff n1 ≤ n2, t1 ≥ t2, and (n1, t1) �= (n2, t2). (12)

5In a related stochastic growth model, the connection extends from the statistics of the largest eigenvalue to
the one of the top eigenvalues [17]. However, it is restricted to fixed time.
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We say that (n1, t1) and (n2, t2) are space-like if either (n2, t2) ≺ (n1, t1) or (n1, t1) ≺ (n2, t2).
Then, a path is called space-like if any two points on it are space-like. The two extreme
cases of space-like paths are (1) fixed level n and increasing time t and (2) fixed time t and
decreasing level n. In [8] it is proven that along space-like paths the correlation functions
are determinantal.

Theorem 1.1 (Theorem 1.1 and Proposition 4.2 of [8]) For any m = 1,2, . . . , pick m (dis-
tinct) triples

κj = (xj , nj , tj ) ∈ Z × N × R≥0 (13)

such that

t1 ≤ t2 ≤ · · · ≤ tm, n1 ≥ n2 ≥ · · · ≥ nm. (14)

Then

P
{
For each j = 1, . . . ,m there exists a kj ,

1 ≤ kj ≤ nj such that x
nj

kj
(tj ) = xj

} = det
[

K(κi ,κj )
]

1≤i,j≤m
, (15)

where

K(κ1;κ2) = − 1

2π i

∮
�0,1

dw
(w − 1)n1−n2e(t1−t2)w

wx1+n1−x2−n2+1
1[(n1,t1)≺(n2,t2)]

+ 1

(2π i)2

∮
�1

dz

∮
�0,z

dw
et1w(1 − w)n1

wx1+n1+1

zx2+n2

et2z(1 − z)n2

1

w − z
. (16)

For a set A, �A is any simple path positively oriented including as only poles the elements
of the set A.

Under the diffusion scaling limit

Xn
k (τ ) := lim

t→∞
xn

k ( 1
2τ t) − 1

2 τ t√
t

(17)

one readily obtains that the correlation functions for the Xn
k ’s are, along space-like paths,

still determinantal with kernel

K̃(ξ1, n1, τ1; ξ2, n2, τ2) = − 2

2π i

∫
iR+ε

dw
e(τ1−τ2)w2−2(ξ1−ξ2)w

wn2−n1
1[(n1,t1)≺(n2,t2)]

+ 2

(2π i)2

∮
|z|=ε/2

dz

∫
iR+ε

dw
eτ1w2−2ξ1w

eτ2z2−2ξ2z

wn1

zn2

1

w − z
(18)

where ε > 0 is arbitrary. This kernel for τ1 = τ2 = 1 appeared first for the GUE minors [29]
and was shown to occur in TASEP in [12]. An antisymmetric version (for general τ ’s) of
this kernel was derived in [13] (with a slightly different scaling in space) and extends the
kernel for the antisymmetric GUE minors of [22].
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GUE Minors

The normalization in (1) is the best suited to make the comparison clear between the scaling
limits of large matrices and large time in TASEP. However, if we look at matrices of different
sizes, it is more natural to drop the N -dependence in the Gaussian term of the GUE measure.
Thus, for what follows, we consider instead of (1) the following probability measure on
N × N Hermitian matrices:

1

Z̃N

exp
(−Tr

(
H 2

))
dH. (19)

Denote by λm
k the kth smallest eigenvalue of the principal submatrix obtained from the first

m rows and columns of a GUE matrix. In our context, these principal submatrices are usually
referred to as minors, and not (as otherwise customary) their determinants. The result is well
known, see e.g. [6, 14, 21]: given the eigenvalues of the N × N matrix, the GUE minors’
eigenvalues are uniformly distributed on the set

D(N) = {
λm

k ∈ R |λm+1
k ≤ λm

k ≤ λm+1
k+1 ,1 ≤ k ≤ m ≤ N

}
. (20)

It is proven in [29] that the correlation functions of these eigenvalues are determinantal with
correlation kernel

KGUE(ξ1, n1; ξ2, n2) = − 2

2π i

∫
iR+ε

dw
e−2(ξ1−ξ2)w

wn2−n1
1[n1<n2]

+ 2

(2π i)2

∮
|z|=ε/2

dz

∫
iR+ε

dw
ew2−2wξ1

ez2−2zξ2

wn1

zn2

1

w − z
, (21)

for any ε > 0. A way of proving is the following. Obviously, changing the condition
λm+1

k ≤ λm
k into λm+1

k < λm
k does not change the system, since we cut out null sets. Then,

using Sasamoto’s trick originally employed for TASEP [37], one can replace the interlacing
condition by a product of determinants,

N−1∏
m=1

det
[
φ
(
λm

i , λm+1
j

)]
1≤i,j≤m+1

, (22)

where λm
m+1 ≡ virt are virtual variables, φ(x, y) = 1[x≤y], φ(virt, y) = 1. Thus, the measure

on D(N) becomes

const ×
(

N−1∏
m=1

det
[
φ
(
λm

i , λm+1
j

)]
1≤i,j≤m+1

)
�

(
λN

) N∏
i=1

e−(λN
i

)2
dλ, (23)

where dλ = ∏
1≤k≤n≤N dλn

k , and � is the Vandermonde determinant. Finally one simply
applies Lemma 3.4 of [11]. A further approach is presented in [21].

1.2 Results

1.2.1 Evolution of GUE Minors

Does there exist an extension of such a result for the minors of β = 2 Dyson’s Brownian
motion? There are two aspects to be considered. The first is to determine whether the evo-
lution of the minors’ eigenvalues can be described by a Markov process. It is known that
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it is not the case if one takes at least three consecutive minors [1]. However, along space-
like paths the evolution is indeed Markovian (see Sect. 4). The second issue concerns the
correlation functions and if they have any similarities with the ones for the 2 + 1 particle
system defined above. As we shall prove, the answer is affirmative if we restrict ourselves
to space-like paths. This is the content of Theorem 1.2 below.

To make the connection more straightforward, we replace the Ornstein-Uhlenbeck
processes by Brownian motions starting from 0. Note that the two models are the same
after an appropriate change of scale in space-time. While preparing this manuscript the re-
sult analogue to Theorem 1.2 below for the Ornstein-Uhlenbeck case was obtained by Adler,
Nordenstam and van Moerbeke [2].

Let H(t) be an N × N Hermitian matrix defined by

Hi,j (t) =

⎧⎪⎨
⎪⎩

1√
2
bi,i(t), if 1 ≤ i ≤ N,

1
2 (bi,j (t) + i b̃i,j (t)), if 1 ≤ i < j ≤ N,

1
2 (bi,j (t) − i b̃i,j (t)), if 1 ≤ j < i ≤ N,

(24)

where bi,j (t) and b̃i,j (t) are independent standard Brownian motions. The measure on the
N × N matrix at time t is then given by

1

Z̃N,t

exp

(
−Tr(H 2)

t

)
dH. (25)

For n ∈ {1, . . . ,N} we denote by H(n, t) the n × n minor of H(t), which is obtained
by keeping the first n rows and columns of H(t). Denote by λn

1(t) ≤ λn
2(t) ≤ · · · ≤ λn

n(t)

the eigenvalues of H(n, t). Then, at any time t , the interlacing property (20) holds. More-
over, along space-like paths the eigenvalues’ process is Markovian with correlation functions
given as follows.

Theorem 1.2 For any m = 1,2, . . . , pick m (distinct) triples

κj = (xj , nj , tj ) ∈ R × N × R≥0 (26)

such that

t1 ≤ t2 ≤ · · · ≤ tm, n1 ≥ n2 ≥ · · · ≥ nm. (27)

Then, the m-point correlation function of the eigenvalues’ point process is given by

ρ(m)(κ1, . . . ,κm) = det
[

KGUE(κi ,κj )
]

1≤i,j≤m
, (28)

where

KGUE(κ1;κ2) = − 2

2π i

∫
iR+ε

dw
e(t1−t2)w2−2(x1−x2)w

wn2−n1
1[(n1,t1)≺(n2,t2)]

+ 2

(2π i)2

∮
|z|=ε/2

dz

∫
iR+ε

dw
ew2t1−2x1w

ez2t2−2x2z

1

w − z

wn1

zn2
, (29)

where ε > 0.
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1.2.2 Evolution of Wishart Minors

The appearance of determinantal correlation functions along space-like paths is not only
limited to Brownian motion on GUE matrices, but they also occur in other Hermitian matrix
models, namely the Laguerre Unitary Ensemble. We show that the evolution of Wishart ma-
trices [40] along space-like paths is determinantal and determine the space-time correlation
kernel.

Let A(n, t) be a p × n complex valued matrix defined by

Ai,j (n, t) = 1√
2

(
bi,j (t) + i b̃i,j (t)

)
, 1 ≤ i ≤ p,1 ≤ j ≤ n, (30)

where the bi,j ’s and b̃i,j ’s are independent standard Brownian motions. Then, we define the
(complex) n×n sample covariance matrix (or Wishart matrix) by H(n, t) = A(n, t)∗A(n, t),
which is usually referred to as the Laguerre process. As before, denote by λn

k(t) the kth
smallest eigenvalue of H(n, t).

Theorem 1.3 For any m = 1,2, . . . , pick m (distinct) triples

κj = (xj , nj , tj ) ∈ R × {1, . . . , p} × R≥0 (31)

such that

t1 ≤ t2 ≤ · · · ≤ tm, n1 ≥ n2 ≥ · · · ≥ nm. (32)

Then, the m-point correlation function of the eigenvalues’ point process is given by

ρ(m)(κ1, . . . ,κm) = det
[

KLUE(κi ,κj )
]

1≤i,j≤m
, (33)

where

KLUE(κ1;κ2) = − 1

2π i

∮
�0

dz
ex1/(z−t1)

ex2/(z−t2)

(z − t1)
p−1−n1

(z − t2)p+1−n2
1[(n1,t1)≺(n2,t2)]

+ −1

(2π i)2

∮
�0

dz

∮
�z,t2

dw
ex2/(z−t1)

ex2/(w−t2)

(z − t1)
p−1−n1

(w − t2)p+1−n2

wp

zp

1

w − z
. (34)

2 Proof of Theorem 1.2

The issue of the Markov property is discussed in Sect. 4 below and therefore we assume
it to hold in this section. For 0 < t1 < t2, the joint distribution of H1 = H(n, t1) and
H2 = H(n, t2) is given by

const × exp

(
−Tr(H 2

1 )

t1

)
exp

(
−Tr((H2 − H1)

2)

t2 − t1

)
dH1 dH2. (35)

The measure on eigenvalues is obtained using Eynard-Mehta formula [16] for coupled ran-
dom matrices, which on its turn is based on the Harish-Chandra/Itzykson-Zuber formula
[23, 24] (see Appendix D). It results in the following formula.
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Lemma 2.1 Let n be fixed. Denote by λn
k(t), 1 ≤ k ≤ n, the eigenvalues of H(n, t). Their

joint distribution at 0 < t1 < t2 is given by

const × �
(
λn(t1)

)
det

(
e

−(λn
i
(t1)−λn

j
(t2))2/(t2−t1)

)
1≤i,j≤n

�
(
λn(t2)

)

×
N∏

i=1

e−(λn
i
(t1))2/t1 dλn

i (t1)dλn
i (t2), (36)

with � the Vandermonde determinant and λn(t) = (λn
1(t), . . . , λ

n
n(t)).

The second formula concerns the joint distribution of the eigenvalues at two different
levels. This result is a special case of the formula (23) discussed above. (It is enough to
reintegrate out the lower levels, which gives a Vandermonde determinant).

Lemma 2.2 Let t be fixed. Denote by λn
k(t), 1 ≤ k ≤ n, the eigenvalues of H(n, t). Their

joint distribution at levels n and n + 1 is given by

const × �
(
λn(t)

)
det

[
φ
(
λn

i (t), λ
n+1
j (t)

)]
1≤i,j≤n+1

�
(
λn+1(t)

)

×
n+1∏
i=1

e−(λn+1
i

(t))2/t dλn
i (t)dλn+1

i (t), (37)

where λn
n+1 ≡ virt are virtual variables, φ(x, y) = 1[x≤y], φ(virt, y) = 1 (and � the Vander-

monde determinant).

The eigenvalues’ process is a Markov process (see Sect. 4 for details) for both fixed
matrix dimension n and increasing time t , as well as for fixed time t and decreasing ma-
trix dimension n. The combination of the formulas in Lemma 2.1 and Lemma 2.2 leads to
Proposition 2.3:

Proposition 2.3 Let N1 ≥ · · · ≥ Nm = 1 be integers and 0 < t1 < · · · < tm be reals. We
denote by λn

1(t) < · · · < λn
n(t) the eigenvalues of H(n, t) and set N0 = N1, Nm+1 = 0. Then

the joint density of

{
λn

k(tj ) : 1 ≤ j ≤ m,Nj ≤ n ≤ Nj−1,1 ≤ k ≤ n
}

(38)

is given by

const × det
[
�

N1,t1
N1−�

(
λ

N1
k (t1)

)]
1≤k,�≤N1

×
m−1∏
j=1

[
det

[
Ttj+1,tj

(
λ

Nj

k (tj+1), λ
Nj

� (tj )
)]

1≤k,�≤Nj

×
Nj∏

n=Nj+1+1

det
[
φ
(
λn−1

k (tj+1), λ
n
�(tj+1)

)]
1≤k,�≤n

]
, (39)
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where
φ(x, y) = 1[x≤y], φ(xn−1

n , y) = 1,

Tt,s (x, y) = 1√
π(t − s)

exp

(
− (x − y)2

t − s

)
1[t≥s],

�
N1,t1
k (x) = 1

t
k/2
1

pk

(
x√
t1

)
1√
πt1

exp

(
−x2

t1

)
,

(40)

for k = 0, . . . ,N1 − 1. Here pk is the standard Hermite polynomial of degree k (see Appen-
dix B for details).

We could have chosen any polynomials of degree k multiplied by the Gaussian weight
without changing the probability measure (39) since the modifications would just affect the
normalization constant. However, this choice allows a huge simplification of the computa-
tions, because of the properties of Lemma 2.4 below.

To determine the kernel, we first slightly rewrite (39). For 1 ≤ n ≤ N1 define
c(n) = #{i : Ni = n}, and we denote the consecutive times for such a level by tn1 < · · · < tnc(n).
Then, the measure (39) can be rewritten as

const ×
N1∏
n=2

(
det

[
φ
(
λn−1

k

(
tn−1
1

)
, λn

�

(
tnc(n)

))]
1≤k,�≤n

×
c(n)∏
a=2

det
[

Ttna ,tn
a−1

(
λn

k

(
tna

)
, λn

�

(
tna−1

))]
1≤k,�≤n

)
det

[
�

N1,t
N1
1

N1−�

(
λ

N1
k

(
t
N1
1

))]
1≤k,�≤N1

. (41)

It is known that a measure of this form has determinantal correlations and the correlation
kernel is computed by means of Theorem 4.2 of [9], which we report in Appendix A for the
reader.

For any given k ∈ Z we set

�
n,t
k (x) = 2k+1

t (k+1)/2

1

2π i

∫
iR+ε

dw ew2−2wx/
√

twk, ε > 0. (42)

For n = N1, t = t1 and k = 0, . . . ,N1 −1, this function is the one in the measure (39), which
is obtained from the first representation of Hermite polynomials in (110).

Lemma 2.4 It holds, for 0 < r < s < t and k ≥ 1,

(i) φ ∗ �
n,t
n−k = �

n−1,t
n−1−k ,

(ii) Tt,s ∗ �
n,s
n−k = �

n,t
n−k ,

(iii) φ ∗ Tt,s = Tt,s ∗ φ,
(iv) Tt,s ∗ Ts,u = Tt,u.

Proof For the first relation, we use Re(w) = ε > 0 so that we can exchange the two integrals,

(
φ ∗ �

n,t
k

)
(x) =

∫ ∞

x

dy
2k+1

t (k+1)/2

1

2π i

∫
iR+ε

dw ew2−2wy/t1/2
wk

= 2k+1

t (k+1)/2

1

2π i

∫
iR+ε

dw ew2
wk

∫ ∞

x

dy e−2wy/t1/2

= 2k

tk/2

1

2π i

∫
iR+ε

dw ew2−2wx/t1/2
wk−1 = �

n−1,t
k−1 (x). (43)
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For the second identity, we first do the change of variable w = z(s/t)1/2 in the integral
representation (42) of �

n,s
k and then perform a Gaussian integration:

(
Tt,s ∗ �

n,s
k

)
(x) = 2k+1

t (k+1)/2

1

2π i

∫
iR+ε

dz ez2s/t zk

∫
R

dy
exp(− (x−y)2

t−s
− 2yz√

t
)

√
π(t − s)

= 2k+1

t (k+1)/2

1

2π i

∫
iR+ε

dz ez2
e−2xz/

√
t zk = �

n,t
k (x). (44)

The third relation is also easy to verify. Indeed,

(φ ∗ Tt,s)(x, z) =
∫

R

dy φ(x, y)Tt,s(y, z) =
∫

R+
dy Tt,s (y + x, z)

=
∫

R

dy Tt,s(x, z − y)φ(z − y, z) =
∫

R

dyTt,s(x, y)φ(y, z)

= (Tt,s ∗ φ)(x, z). (45)

The last relation is the standard heat kernel semigroup identity. �

By Theorem A.1 and Remark A.2, there is a simple way of getting the kernel if the matrix
M with

Mk,� = (
φ ∗ T k ∗ · · · ∗ φ ∗ T N1 ∗ �

N1,t
N1
1

N1−�

)(
xk−1

k

)
, (46)

is upper triangular, where T n := Ttn
c(n)

,tn1
. The identities in Lemma 2.4 give, for k ≥ �,

Mk,� = (
φ ∗ �

k,tk
c(k)

k−�

)(
xk−1

k

) =
∫

R

dx �
k,tk

c(k)

k−� (x)

{
= 0, for � < k,

�= 0, for � = k,
(47)

because the last expression is (after a rescaling in x) proportional to the orthogonal relation
(109) for n = 0 and m = k − �.

Next we need to determine the polynomials �
n,t
� , � = 0, . . . , n − 1, which are biorthogo-

nal to the functions �
n,t
k , k = 0, . . . , n − 1, i.e., polynomials satisfying

∫
R

dx�
n,t
k (x)�

n,t
� (x) = δk,�, 1 ≤ k, � ≤ n − 1. (48)

Lemma 2.5 The functions

�
n,t
� (x) = 1

�!
t�/2

2�
p�

(
x√
t

)
= t�/2

2�

1

2π i

∮
�0

dz
e−z2+2zx/t1/2

z�+1
(49)

satisfy the relation (48).
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Proof One does the change of variable x → x
√

t and then uses the orthogonal rela-
tion (109). �

Let us compute the last term in (108). To simplify the notations, we set t1 = t
n1
a1 and

t2 = t
n2
a2 . First, we do the changes of variables w = √

t1w̃ and z = √
t2z̃ in (42) and (49). We

obtain

n2∑
k=1

�
n1,t1
n1−k(x1)�

n2,t2
n2−k(x2) =

n2∑
k=1

2n1

2n2

2

(2π i)2

∫
iR+ε

dw̃

∮
�0

dz̃
ew̃2t1−2w̃x1

ez̃2t2−2z̃x2

w̃n1−k

z̃n2+1−k
. (50)

Now, we take the integral over z̃ to satisfy |z̃| < |w̃|, say |z̃| = ε/2. This allows us to take
the sum inside and extend it to +∞ (because for k > n2 the pole at zero for z̃ vanishes). The
sum over k gives

∑
k≥1

z̃k−1

w̃k
= 1

w̃ − z̃
(51)

so that we obtain

n2∑
k=1

�
n1,t1
n1−k(x1)�

n2,t2
n2−k(x2)

= 2n1

2n2

2

(2π i)2

∫
iR+ε

dw̃

∮
|z|=ε/2

dz̃
ew̃2t1−2w̃x1

ez̃2t2−2z̃x2

w̃n1

z̃n2

1

w̃ − z̃
. (52)

The last term we have to compute is φ(t
n1
a1 ,t

n2
a2 ), see Theorem A.1. To simplify the notations,

we set φ(t
n1
a1 ,t

n2
a2 )(x, y) = φ(n1,t1;n2,t2)(x, y). We have

φ(n1,t1;n2,t2) =
{

φ∗(n2−n1) ∗ Tt2,t1 , if (n1, t1) ≺ (n2, t2),

0, otherwise.
(53)

It is easy to verify that φ(x, y) has the integral representation

φ(x, y) = 2

2π i

∫
iR+ε

dw
e2w(y−x)

2w
, ε > 0. (54)

and similarly,

φ∗n(x, y) = 2

2π i

∫
iR+ε

dw
e2w(y−x)

(2w)n
, ε > 0. (55)

Then, for (n1, t1) ≺ (n2, t2), a Gaussian integration gives us

φ(n1,t1;n2,t2)(x1, x2) = 2n1

2n2

2

2π i

∫
iR+ε

dw
ew2(t1−t2)−2w(x1−x2)

wn2−n1
. (56)

Equations (52) and (56) yield a kernel which is, up to the conjugation factor6 2n1−n2 , the
same as (29). Thus the proof of Theorem 1.2 is completed.

6A determinantal point process is defined by its correlation kernel, which is defined up to conjugations.
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3 Proof of Theorem 1.3

As for the GUE case, the issue of the Markov property is discussed in Sect. 4 below. For
0 < t1 < t2, the joint distribution of A1 = A(n, t1) and A2 = A(n, t2) is given by

const × exp

(
−Tr(A∗

1A1)

t1

)
exp

(
−Tr((A∗

2 − A∗
1)(A2 − A1))

t2 − t1

)
dA1 dA2. (57)

The measure on eigenvalues is obtained (as in the Ornstein-Uhlenbeck case studied in [40])
by the Harish-Chandra/Itzykson-Zuber formula for rectangular matrices [25, 42] (see Ap-
pendix D). It results in the following formula.

Lemma 3.1 Let n be fixed. Denote by λn
k(t), 1 ≤ k ≤ n ≤ p, the eigenvalues of

H(n, t) = A(n, t)∗A(n, t). Their joint distribution at 0 < t1 < t2 is given by

const

× det

[
Ip−n

(
2
√

λn
i (t1)λ

n
j (t2)

t2 − t1

)(
λn

j (t2)

λn
i (t1)

)(p−n)/2

e
−(λn

i
(t1)+λn

j
(t2))/(t2−t1)

]
1≤i,j≤n

× �
(
λn(t1)

)
�

(
λn(t2)

) n∏
i=1

(
λi(t1)

)p−n
e−λn

i
(t1)/t1 dλn

i (t1)dλn
i (t2), (58)

where Im is the modified Bessel function of order m, see (117).

The second formula concerns the joint distributions of the eigenvalues at two different
levels. This is studied in [21] with the following result.

Lemma 3.2 Let t be fixed. Denote by λn
k(t), 1 ≤ k ≤ n < p, the eigenvalues of H(n, t).

Their joint distribution at levels n and n + 1 is given by

const × �
(
λn(t)

)
det

[
φ
(
λn

i (t), λ
n
j (t)

)]
1≤i,j≤n+1

�
(
λn+1(t)

)

×
n+1∏
i=1

(
λn+1

i (t)
)p−(n+1)

e−λn+1
i

(t)/t dλn
i (t)dλn+1

i (t), (59)

where λn
n+1 ≡ virt are virtual variables, φ(x, y) = 1[x≥y] and φ(virt, y) = 1.

Putting together the formulas in Lemmata 3.1 and 3.2 leads to the next proposition.

Proposition 3.3 Let p ≥ N1 ≥ · · · ≥ Nm = 1 be integers and 0 < t1 < · · · < tm be real
numbers. We denote by λn

1(t) < · · · < λn
n(t) the eigenvalues of H(n, t) and set N0 = N1,

Nm+1 = 0. Then the joint density of

{
λn

k(tj ) : 1 ≤ j ≤ m,Nj ≤ n ≤ Nj−1,1 ≤ k ≤ n
}

(60)
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is given by

const × det
[
�

p−N1,t1
N1−�

(
λ

N1
k (t1)

)]
1≤k,�≤N1

×
m−1∏
j=1

[
det

[
T p−Nj

tj+1,tj

(
λ

Nj

k (tj+1), λ
Nj

� (tj )
)]

1≤k,�≤nj

×
Nj∏

�=Nj+1+1

det
[
φ
(
λn−1

k (tj+1), λ
n
�(tj+1)

)]
1≤k,�≤n

]
, (61)

where

φ(x, y) = 1[x≥y] and φ
(
λn

n+1, y
) = 1,

T n
t,s(x, y) =

(
x

y

)n/2

In

(
2
√

xy

t − s

)
1

t − s
exp

(
−x + y

t − s

)
1[x,y>0]1[s≤t],

�
p−N1,t1
k (x) = k!

(p − N1 + k)!tk+1
1

(
x

t1

)p−N1

exp

(
− x

t1

)
L

p−N1
k

(
x

t1

)
1[x>0],

(62)

for k = 0, . . . ,N1 − 1. Here Ln
k are the generalized Laguerre polynomials of order n and

degree k, see Appendix C.

Comparing the mathematical structure of (39) and (61), we see that the only difference
is that the transition kernel for time depends also on the level. However, this does not pose
any problem, see Remark A.3.

For k ∈ Z and x ∈ R+ we set

�
n,t
k (x) = t−(k+1)

2π i

∮
�0

dz
(z − 1)k

zn+k+1
ex(z−1)/t . (63)

For n = p − N1, t = t1 and k = 0, . . . ,N1 − 1 the above defined function coincides with
(62). Moreover, the prefactors are chosen such that the following nice recursion relations
hold.

Lemma 3.4 It holds, for t > s > r > 0, n ≤ p, and k ≥ 1

(i) φ ∗ �
p−n,t

n−k = �
p−(n−1),t

(n−1)−k ,

(ii) T p−n
t,s ∗ �

p−n,s

n−k = �
p−n,t

n−k ,

(iii) φ ∗ T p−n
t,s = T p−(n−1)

t,s ∗ φ,
(iv) T p−n

t,s ∗ T p−n
s,r = T p−n

t,r .

To prove this lemma, we first obtain a different integral representation for (63). Namely,
after the change of variable z = z̃/(z̃ − t) we get

�
n,t
k (x) = −1

2π i

∮
�0

dz̃
(z̃ − t)n−1

z̃n+k+1
ex/(z̃−t). (64)
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Proof of Lemma 3.4 Using the representation (64), we have

(
φ ∗ �

n,t
k

)
(x) = −1

2π i

∮
�0

dz
(z − t)n−1

zn+k+1

∫ x

0
dyey/(z−t)

= −1

2π i

∮
�0

dz
(z − t)n

zn+k+1

(
ex/(z−t) − 1

) = �
n+1,t
k−1 (x) (65)

because for k ≥ 0 the term independent of x has residue equal to zero.
Using the integral representation (117) of the modified Bessel function In in (61), we get

(for x, y > 0, t > s > 0)

T n
t,s(x, y) = 1

2π i(t − s)

∮
�0

dz

zn+1
exp

(
−x(1 − z) + y(1 − z−1)

t − s

)
, (66)

and the change of variable z = (w − s)/(w − t) leads to

T n
t,s(x, y) = −1

2π i

∮
�s

dw
(w − t)n−1

(w − s)n+1
ex/(w−t)−y/(w−s). (67)

We can choose the integration path with w large and z small so that Re(1/(z − s) −
1/(w − t)) < 0 (in particular, z is contained in �s , so that we write it explicitly as �s,z).
Then, we can exchange the integral over y with the integral over z and w,

(
T n

t,s ∗ �
n,s
k

)
(x)

= 1

(2π i)2

∮
�0

dz
(z − s)n−1

zn+k+1

∮
�s,z

dw
(w − t)n−1

(w − s)n+1
ex/(w−t)

∫
R+

dyey/(z−s)−y/(w−s)

= 1

(2π i)2

∮
�0

dz
(z − s)n

zn+k+1

∮
�s,z

dw
(w − t)n−1

(w − s)n
ex/(w−t) 1

z − w
. (68)

Now we enlarge the path of z so that encloses the path of w. This can be made at the expense
of the residue at z = w. Thus we get

(
T n

t,s ∗ �
n,s
k

)
(x) = 1

(2π i)2

∮
�s

dw
(w − t)n−1

(w − s)n
ex/(w−t)

∮
�0,w

dz
(z − s)n

zn+k+1

1

z − w

− 1

2π i

∮
�0

dw
(w − t)n−1

wn+k+1
ex/(w−t) = �

n,t
k (x), (69)

because the first term is zero, since the residue of z at infinity is zero (k ≥ 0).
For the third identity, we use the representation (66) in which we take the path �0 for w

to satisfy |w| > 1. Then,

(
φ ∗ T n−1

t,s

)
(x, y) = 1

2π i(t − s)

∮
�0

dw

wn
e− y

t−s (1−w−1)

∫ x

0
dz e− z

t−s (1−w)

= 1

2π i

∮
�0

dw

(w − 1)wn
e− y

t−s (1−w−1)
(
e− x

t−s (1−w) − 1
)
. (70)
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The last term (the integrand independent of x) is zero, because the integrand has residue
zero at infinity, whenever n − 1 ≥ 0. Thus,

(
φ ∗ T n−1

t,s

)
(x, y) = 1

2π i

∮
�0

dw

(w − 1)wn
e− x

t−s (1−w)− y
t−s (1−w−1)

= 1

2π i(t − s)

∮
�0

dw

wn+1
e− x

t−s (1−w)

∫ ∞

y

dze− z
t−s (1−w−1)

= (
T n

t,s ∗ φ
)
(x, y). (71)

The final identity is true because T n it is the transition density of a 2n + 1-dimensional
Bessel process. �

We proceed as in the proof of Theorem 1.2 to show that the matrix M is upper triangular.
Indeed, with T n := T p−n

tn
c(n)

,tn1
and Lemma 3.4 we find

Mk,� = (
φ ∗ �

p−k,tk
c(k)

k−�

)(
xk−1

k

) =
∫

R+
dx�

p−k,tk
c(k)

k−� (x) =
{

0, if � < k,

1, if � = k,
(72)

because of the orthogonality between �
n,t
k , k ≥ 1, and the constant function.

Lemma 3.5 Define, for � = 0, . . . , n − 1, the polynomial �
n,t
� of degree � by

�
n,t
� (x) = 1

2π i

∮
�0,t

dw
wn+�

(w − t)n+1
e−x/(w−t). (73)

These polynomials satisfy the orthogonal relation

∫
R+

dx �
n,t
k (x)�

n,t
� (x) = δk,� (74)

for k, � = 0, . . . , n − 1.

Proof By the integral representation in Appendix C for Laguerre polynomials, we have

t�Ln
�(x/t) = t�

2π i

∮
�1

dw
wn+�

(w − 1)�+1
e−x(w−1)/t (75)

and, after change of variable w = w̃/(w̃ − t), we get t�Ln
�(x/t) = �

n,t
� (x) as defined in

(73). The orthogonality relation (74) holds because after the change of variable x → xt , the
left-hand side becomes

t

∫
R+

dx �
n,t
k (xt)�

n,t
� (xt) = k!t�

(n + k)!tk
∫

R+
dx xne−xLn

�(x)Ln
k(x) = δk,�, (76)

which is the orthogonal relation (113) for Laguerre polynomials. �
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We now compute the kernel and start with the sum in (108). Let us use the notations
t1 = t

n1
a1 , t2 = t

n2
a2 . Then we get

n2∑
k=1

�
p−n1,t1
n1−k (x1)�

p−n2,t2
n2−k (x2)

= −1

(2π i)2

∮
�0

dz

∮
�0,t2

dw
ex1/(z−t1)

ex2/(w−t2)

(z − t1)
p−n1−1

(w − t2)p−n2+1

wp

zp+1

n2∑
k=1

(
z

w

)k

. (77)

We choose �0 and �0,t2 such that they do not intersect, i.e., |z| < |w|. For k > n2 the pole at
w = ∞ vanishes and we can thus extend the summation over k to ∞ with the result

−1

(2π i)2

∮
�0

dz

∮
�z,t2

dw
ex1/(z−t1)

ex2/(w−t2)

(z − t1)
p−n1−1

(w − t2)p−n2+1

wp

zp

1

w − z
, (78)

which is the second term in the kernel in Theorem 1.3.
It remains to compute φ(t

n1
a1 ,t

n2
a2 ). To simplify the notations, we set φ(t

n1
a1 ,t

n2
a2 )(x, y) =

φ(n1,t1;n2,t2)(x, y). By Lemma 3.4 we have

φ(n1,t1;n2,t2) =
{

T p−n1
t2,t1

∗ φ∗(n2−n1), if (n1, t1) ≺ (n2, t2),

0, otherwise.
(79)

The integral representation (66) for T and φ∗n(x, y) = (x−y)n−1

(n−1)! φ(x, y) lead to

φ(n1,t1;n2,t2)(x, y)

= (t1 − t2)
−1

2π i

∮
�0

dw
e−(1−w)x/(t1−t2)

wp+1−n1

∫ ∞

y

dze−z(1−w−1)/(t1−t2) (z − y)n2−n1−1

(n2 − n1 − 1)!

= (t1 − t2)
n2−n1−1

2π i

∮
�0

dw
e−x(1−w)/(t1−t2)−y(1−w−1)/(t1−t2)

wp+1−n2(w − 1)n2−n1
. (80)

Finally, the change of variable w = (z − t2)/(z − t1) gives the first term in Theorem 1.3.

4 Markov Property on Space-like Paths

The process on matrices is clearly a Markov process along space-like paths. What we have
to see is that the Markov property still holds for the eigenvalues. The key ingredients are
that the measure on matrices is invariant under choice of basis, and that the choice of basis
at an observation point (n, t) depends neither on the eigenvalues at that the previous point
((n + 1, t) or (n, t ′) with t ′ < t ) nor on the eigenvalues at (n, t).

4.1 Diffusion on GUE Minors

We first consider Dyson’s diffusion. Here we denote by H(n, t) the n × n minor at time t

and by �(n, t) the diagonalized matrix of H(n, t) which is obtained from conjugation by
the unitary matrix U(n, t),

H(n, t) = U(n, t)�(n, t)U ∗(n, t). (81)
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The Jacobian of the transformation H(n, t) → (�(n, t),U(n, t)) gives

dH(n, t) = �
(
�(n, t)

)2
d�(n, t)dμn

(
U(n, t)

)
, (82)

where dμn denotes the Haar measure on the unitary group U (n).
Consider a measure at (n, t) which is invariant under unitary transformations, i.e. with

respect to the group U (n). It has the form

f1

(
�(n, t)

)
d�(n, t)dμn

(
U(n, t)

)
(83)

for some explicit function f1 (e.g. f1(H) = exp(−Tr(H 2)/t)).
Next fix n and consider times t ′ > t . Then, the probability measure on the matrices has

the form (see (35))

f1

(
�(n, t)

)
e−b Tr((H(n,t ′)−H(n,t)))2

d�(n, t)dμn

(
U(n, t)

)
dH

(
n, t ′

)
= f1

(
�(n, t)

)
e−b Tr((�(n,t ′)−Ũ(n,t)�(n,t)Ũ∗(n,t)))2

d�(n, t)dμn

(
Ũ (n, t)

)
dH

(
n, t ′

)
(84)

because of the unitary invariance of the Haar measure (here we have set Ũ (n, t) =
U(n, t ′)∗U(n, t)). The integration with respect to dμn(Ũ(n, t)) is made by the well-known
Harish-Chandra/Itzykson-Zuber (115) and the result is as in Lemma 2.1. We are left with
a probability density that depends only on the eigenvalues times dH(n, t ′), that is, the pro-
jection onto eigenvalues at time t did not restrict the complete freedom of choice of basis at
(n, t ′). Otherwise stated, by the decomposition (82), after integration over dμn(Ũ(n, t)) we
have a measure on eigenvalues times dμn(U(n, t ′)) of the form (for some explicit f2, which
can be easily computed)

f2

(
�(n, t),�

(
n, t ′

))
d�(n, t)d�

(
n, t ′

)
dμn

(
U

(
n, t ′

))
. (85)

The other choice is to consider t fixed and look at the measure at (n, t) and (n−1, t). The
result explained in Proposition 4.2 of [6] is actually a conditional measure on eigenvalues
given the eigenvalues of the minor of size n, thus it is not restricted to GUE, but it holds
for any measure which is invariant under U (n), see Theorem 3.4 of [14]. The projection on
the eigenvalues at (n, t) and (n − 1, t) leads to Lemma 2.2. We can also decide to project
on the eigenvalues at (n, t) and (n − 1, t) and the eigenvectors at (n − 1, t). This means
that we do not integrate out the variables corresponding to the unitary transformations of the
(n − 1) × (n − 1) minor given by(

U(n − 1, t) 0

0 1

)
, with U(n − 1, t) distributed as dμn−1, (86)

which form a subgroup of U (n). The eigenvalues �(n − 1, t) are independent of the
eigenvectors (thus of the choice of basis U(n − 1, t)) and the measure on U(n − 1, t) is
dμn−1(U(n − 1, t)) (see e.g. Corollary 2.5.4 in [3]). The measure on H(n, t) is invariant
under U (n), so are the eigenvalues �(n, t) independent of the choice of U(n − 1, t) (this
last property follows also from the direct computation in Sect. 3.1 of [21]; Sect. 3.2 for
Wishart matrices). Thus, the projection on the eigenvalues at (n, t) and (n − 1, t) and the
eigenvectors at (n − 1, t) leads to a measure of the form

f3

(
�(n, t),�(n − 1, t)

)
d�(n, t)d�(n − 1, t)dμn−1

(
U(n − 1, t)

)
(87)

for some explicit function f3 (compare with Lemma 2.2).
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To resume, (85) and (87) tell us that starting from a measure of the form (83), in which the
choice of basis is completely free, the projection onto the eigenvalues obtained by integration
over the angular variables does not fix the basis at the next step in the basic steps of space-
like paths. This implies that the eigenvalues’ process along space-like paths is a Markov
process.

4.2 Diffusion on Wishart Minors

Consider now diffusion on Wishart matrices. Let H(n, t) = A∗(n, t)A(n, t) be the n × n

minor at time t , where A(n, t) is the p × n matrix with singular value decomposition
A(n, t) = U(p, t)�(n, t)V ∗(n, t), where U(p, t) is a p × p Haar-distributed on U (p),
V (n, t) is a n × n Haar-distributed on U (n), and �(n, t) is a p × n matrix with en-
tries zeros except on the diagonal, where we find the singular values of A(n, t). Also, let
�(n, t) = �∗(n, t)�(n, t) the matrix of the eigenvalues of H(n, t). Thus we have

H(n, t) = A∗(n, t)A(n, t) = V (n, t)�(n, t)V ∗(n, t). (88)

The Jacobian of the transformation A(n, t) → (�(n, t),U(n, t),U(p, t)) gives (see
e.g. [34])

dA(n, t) = const × (
det

(
�∗(n, t)�(n, t)

))p−n+1/2
�2

(
�∗(n, t)�(n, t)

)
× d�(n, t)dμn

(
V (n, t)

)
dμp

(
U(p, t)

)
, (89)

or, using that �(n, t) = �∗(n, t)�(n, t),

dA(n, t) = const × (
det

(
�(n, t)

))p−n
�2

(
�(n, t)

)
× d�(n, t)dμn

(
V (n, t)

)
dμp

(
U(p, t)

)
. (90)

Therefore, the starting measure at (n, t) has the form

g1

(
�(n, t)

)
d�(n, t)dμn

(
V (n, t)

)
dμp

(
U(p, t)

)
(91)

for some explicit function g1.
Next consider fixed n and time t ′ > t . Then, the probability measure on the matrices has

the form (see (57))

g1

(
�(n, t)

)
e−b Tr((A∗(n,t ′)−A∗(n,t))(A(n,t ′)−A(n,t)))

× d�(n, t)dμn

(
V (n, t)

)
dμp

(
U(p, t)

)
dA

(
n, t ′

)
= g1

(
�(n, t)

)
e−b Tr([�∗(n,t ′)−Ṽ ∗(n,t)�∗(n,t)Ũ (p,t)] [�(n,t ′)−Ũ (p,t)�(n,t)Ṽ ∗(n,t)])

× d�(n, t)dμn

(
Ṽ (n, t)

)
dμp

(
Ũ (p, t)

)
dA

(
n, t ′

)
(92)

because of unitary invariance of the Haar measure (we set Ṽ (n, t) = V (n, t ′)∗V (n, t) and
Ũ (p, t) = U(p, t ′)∗U(p, t)). An integration with respect to dμn(Ṽ (n, t))dμp(Ũ(p, t)) ac-
cording to (116) results in the formula of Lemma 3.1. We are left with a probability density
that depends only on the eigenvalues times dA(n, t ′), that is, the projection onto eigenvalues
at time t did not restrict the complete freedom of choice of basis at (n, t ′). Otherwise stated,
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by (90) we have a measure on eigenvalues times dμn(V (n, t ′))dμp(U(p, t ′)) of the form
(for some explicit g2, which can be easily computed)

g2

(
�(n, t),�

(
n, t ′

))
d�(n, t)d�

(
n, t ′

)
dμn

(
V

(
n, t ′

))
dμp

(
U

(
p, t ′

))
. (93)

The other choice is to consider t fixed and look at the measure at (n, t) and (n − 1, t).
This works as for the Hermitian case and we get a measure of the form

g3

(
�(n, t),�(n − 1, t)

)
d�(n, t)d�(n − 1, t)dμn−1

(
V (n − 1, t)

)
dμp

(
U(p, t)

)
(94)

for some explicit function g3 (compare with Lemma 3.2).
Therefore (93) and (94) tell us that starting from a measure of the form (91), in which the

choice of basis (in which the matrix A is represented) is completely free, the projection onto
the eigenvalues obtained by integration over the angular variables does not fix the basis at
the next step in the basic steps of space-like paths. This implies that the eigenvalues’ process
along space-like paths is a Markov process.
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Appendix A: Space-like Determinantal Correlations

For convenience we report here the statement of Theorem 4.2 of [9].
Let X1, . . . ,XN be finite sets and c(1), . . . , c(N) be arbitrary nonnegative integers. Con-

sider the set

X = (X1 � · · · � X1) � · · · � (XN � · · · � XN) (95)

with c(n) + 1 copies of each Xn. We want to consider a special form of the weight W(X)

for any subset X ⊂ X, which turns out to have determinantal correlations.
To define the weight we need a bit of notations. Let

φn( · , · ) : Xn−1 × Xn → C, n = 2, . . . ,N,

φn(virt, · ) : Xn → C, n = 1, . . . ,N,

�N
j ( · ) : XN → C, j = 0, . . . ,N − 1,

(96)

be arbitrary functions on the corresponding sets. Here the symbol virt stands for a “virtual”
variable, which is convenient to introduce for notational purposes. In applications virt can
sometimes be replaced by +∞ or −∞. The φn represents the transitions from Xn−1 to Xn.

Also, let

tN0 ≤ · · · ≤ tNc(N) = tN−1
0 ≤ · · · ≤ tN−1

c(N−1) = tN−2
0 ≤ · · · ≤ t2

c(2) = t1
0 ≤ · · · ≤ t1

c(1) (97)

be real numbers. In applications, these numbers refer to time moments. Finally, let

Ttna ,tn
a−1

( · , · ) : Xn × Xn → C, n = 1, . . . ,N, a = 1, . . . , c(n), (98)

be arbitrary functions. The Ttna ,tn
a−1

represents the transition between two copies of Xn asso-
ciated to “times” tna−1 and tna .
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Then, to any subset X ⊂ X we assign its weight W(X) as follows. W(X) is zero unless
X has exactly n points in each copy of Xn, n = 1, . . . ,N . In the latter case, denote the points
of X in the mth copy of Xn by xn

k (tnm), k = 1, . . . , n, m = 0, . . . , c(n). Thus,

X = {
xn

k

(
tnm

) | k = 1, . . . , n; m = 0, . . . , c(n); n = 1, . . . ,N
}
. (99)

Set

W(X) =
N∏

n=1

[
det

[
φn

(
xn−1

k

(
tn−1
0

)
, xn

l

(
tnc(n)

))]
1≤k,l≤n

×
c(n)∏
a=1

det
[

Ttna ,tn
a−1

(
xn

k

(
tna

)
, xn

l

(
tna−1

))]
1≤k,l≤n

]
det

[
�N

N−l

(
xN

k

(
tN0

))]
1≤k,l≤N

, (100)

where xn−1
n ( · ) = virt for all n = 1, . . . ,N .

In what follows we assume that the partition function of our weights does not vanish,

Z :=
∑
X⊂X

W(X) �= 0. (101)

Under this assumption, the normalized weights W̃ (X) = W(X)/Z define a (generally speak-
ing, complex valued) measure on 2X of total mass 1. One can say that we have a (complex
valued) random point process on X, and its correlation functions are defined accordingly,
see e.g., [10]. We are interested in computing these correlation functions.

Let us introduce the compact notation for the convolution of several transitions. For any
n = 1, . . . ,N and two time moments tna > tnb we define

Ttna ,tn
b

= Ttna ,tn
a−1

∗ Ttn
a−1,tn

a−2
∗ · · · ∗ Ttn

b+1,tn
b
, T n = Ttn

c(n)
,tn0

, (102)

where we use the notation (f ∗ g)(x, y) := ∑
z f (x, z)g(z, y). For any time moments

t
n1
a1 ≥ t

n2
a2 with (a1, n1) �= (a2, n2), we denote the convolution over all the transitions between

them by φ(t
n1
a1 ,t

n2
a2 ):

φ(t
n1
a1 ,t

n2
a2 ) = T

t
n1
a1 ,t

n1
0

∗ φn1+1 ∗ T n1+1 ∗ · · · ∗ φn2 ∗ T
t
n2
c(n2)

,t
n2
a2

. (103)

If there are no such transitions, i.e., if t
n1
a1 < t

n2
a2 or (a1, n1) = (a2, n2), we set φ(t

n1
a1 ,t

n2
a2 ) = 0.

Furthermore, define the matrix M = [Mk,l]Nk,l=1 by

Mk,l = (
φk ∗ T k ∗ · · · ∗ φN ∗ T N ∗ �N

N−l

)
(virt) (104)

and the vector

�
n,tna
n−l = φ(tna ,tN0 ) ∗ �N

N−l , l = 1, . . . ,N. (105)

The following statement describing the correlation kernel is a part of Theorem 4.2 of [9].

Theorem A.1 (Part of Theorem 4.2 of [9]) Assume that the matrix M is invertible. Then
Z = detM �= 0, and the (complex valued) random point process on X defined by the weights
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W̃ (X) is determinantal. Its correlation kernel can be written in the form

K
(
n1, t

n1
a1

, x1;n2, t
n2
a2

, x2

) = −φ(t
n1
a1 ,t

n2
a2 )(x1, x2)

+
N∑

k=1

n2∑
l=1

�
n1,t

n1
a1

n1−k (x1)
[
M−1

]
k,l

(
φl ∗ φ

(tl
c(l)

,t
n2
a2 )

)
(virt, x2). (106)

Remark A.2 As stated in the complete statement of Theorem 4.2 of [9], there is one situation
where the kernel takes a simple formula. Namely, when the matrix M is upper-triangular,
then

�
n2,t

n2
a2

n2−k (x) :=
n2∑
l=1

[
M−1

]
k,l

(
φl ∗ φ

(tl
c(l)

,t
n2
a2 )

)
(virt, x) (107)

are the function biorthogonal to �
n2,t

n2
a2

n2−k (x) obtained for the non-extended kernel (i.e., at
fixed level and fixed time). In the case of random matrices which we consider, the functions
�

n,t
k , k = 0, . . . , n − 1, have to be polynomials of degree k because det(�n,t

k (xj ))1≤j,k≤n

must be proportional to �(x) = det(xk−1
j )1≤j,k≤n, the Vandermonde determinant. Then, the

kernel is simply written as

K
(
n1, t

n1
a1

, x1;n2, t
n2
a2

, x2

) = −φ(t
n1
a1 ,t

n2
a2 )(x1, x2) +

n2∑
k=1

�
n1,t

n1
a1

n1−k (x1)�
n2,t

n2
a2

n2−k (x2). (108)

Remark A.3 Looking at the proof of the above theorem in [9] one also sees that the time
evolutions T can be taken to be level-inhomogeneous, i.e., the Ttna ,an

0
can be a function of

tna , tn0 and also of the level n. Such a situation occurs for the Wishart matrices case.

The proof of Theorem A.1 given in [9] is based on the algebraic formalism of [10].
Another proof can be found in Sect. 4.4 of [22]. Although we stated Theorem A.1 for the
case when all sets Xn are finite, one easily extends it to a more general setting. Indeed, the
determinantal formula for the correlation functions is an algebraic identity, and the limit
transition to the case when the Xn’s are allowed to be countably infinite is immediate, under
the assumption that all the sums needed to define the ∗-operations above are absolutely
convergent.

Appendix B: Hermite Polynomials

The Hermite polynomial of degree n is denoted here pn(x). We use the normalization
of [31]: ∫

R

dx e−x2
pn(x)pm(x) = δm,n

√
π2nn!. (109)

There are two useful integral representations for the Hermite polynomials pn(x),

pn(x) = 2n

i
√

π
ex2

∫
iR+ε

dwew2−2xwwn,

pn(x) = n!
2π i

∮
�0

dze−(z2−2xz)z−(n+1),

(110)



On the Partial Connection Between Random Matrices 635

as well as the identities (with 0 < q < 1) which can be found in [28, 31]

1√
π(1 − q2)

exp

(
− (x − qy)2

1 − q2

)
= e−x2

∞∑
k=0

pk(x)pk(y)qk

√
π2kk! ,

∫ ∞

x

dy e−y2
pn(y) = e−x2

pn−1(x),

pn(x) = (−1)npn(−x).

(111)

These identities can be useful to rewrite the double integral representation into an expres-
sion in terms of Hermite polynomials (as it was made e.g. in Lemma 24 of [13] for the
antisymmetric GUE minor kernel).

Appendix C: Laguerre Polynomials

The generalized Laguerre polynomials L
p

k of degree k and order p are polynomials on R+
defined by

L
p

k (x) = x−pex

k!
dk

dxk

(
xp+ke−x

)
. (112)

They satisfy the orthogonal relation

∫
R+

dx xpe−xL
p

k (x)L
p

� (x) = (p + k)!
k! δk,� (113)

and have integral representations,

L
p

k (x) = 1

2π i

∮
�1

dw
e−x(w−1)wp+k

(w − 1)k+1
,

L
p

k (x) = (p + k)!
k!xp

1

2π i

∮
�0

dz
exz(z − 1)k

zp+k+1
.

(114)

Appendix D: Harish-Chandra/Itzykson-Zuber Formulas

Here we report the Harish-Chandra/Itzykson-Zuber formula as well as its generalization for
rectangular matrices.

Let A = diag(a1, . . . , aN) and B = diag(b1, . . . , bN) two diagonal N × N matrices. Let
dμ denote the Haar measure on the unitary group U (N). Then,

∫
U (N)

dμ(U) exp
(
Tr

(
AUBU ∗)) =

N−1∏
p=1

p!det(eaibj )1≤i,j≤N

�(a)�(b)
, (115)

where �(a) is the Vandermonde determinant of the vector a = (a1, . . . , aN).
The extension to rectangular matrices can be found in Sect. 3.2 of [42] and was derived

in [25]. Let A be a complex N1 ×N2 matrix, B a complex N2 ×N1 matrix so that the N2 ×N2
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matrices A∗A and BB∗ are diagonal with (real positive) eigenvalues a = (a1, . . . , aN2) and
b = (b1, . . . , bN2) respectively. W.l.o.g. we assume N1 ≥ N2. Then,

∫
U (N2)

dμ(U)

∫
U (N1)

dμ(V ) exp
(
Tr

(
AUBV ∗ + B∗U ∗A∗V

))

=
∏N2−1

p=1 p!∏N1−1
q=1 q!∏N1−N2−1

r=1 r!
det(IN1−N2(2

√
aibj ))1≤i,j≤N2

�(a)�(b)
∏N2

i=1(aibi)(N1−N2)/2
, (116)

where In is the modified Bessel function defined by

In(2x) = 1

2π i

∮
�0

dz
ex(z+z−1)

zn+1
=

∞∑
k=0

xk

k!
xk+|n|

(k + |n|)! , (117)

for n ∈ Z.
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